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Executive Summary 

High water temperatures are stressful to juvenile salmon and steelhead in the Scott River. The Quartz Valley 

Indian Reservation (QVIR) Environmental Department monitors water quality at the U.S. Geological Survey (USGS) 

Scott River gage using multi-parameter sondes. The Klamath National Forest also monitors water temperature at 

the same site. During the months of May–July, water temperatures are generally much cooler in years with high 

river flow than in years with low river flow. In this memo, we develop a statistical model to analyze the 

relationships between daily flow, air temperature, and water temperature data collected during the months of 

May–October,1995–2018. We then use that model to predict daily water temperatures under a variety of 

scenarios with different combinations (i.e., high, typical, and low) of flows and air temperatures. Additional flow 

scenarios include the USFS first-priority Schedule D water right and the California Department of Fish and 

Wildlife’s 2017 Interim Instream Flow Criteria. The CDFW and USFS flows do not consistently track any particular 

water year type throughout the entire season but instead represent extreme drought conditions in May, then 

represent high flow year conditions in September and October. The purpose of this analysis is to quantitatively 

assess the importance of instream flows to water temperature in the Scott River. 

The model results suggest that flow and air temperature both have strong effects on water temperature. The 

cooling effect of high flow varies across the season, with greater effects in May–July than August, and almost no 

effect in September and October. For example, relative to the lowest-flow scenarios, the water temperatures 

predicted under the highest-flow scenarios are 6.3 °C cooler on June 1, 3.5 °C cooler on August 1, and similar on 

October 1. With short days and naturally lower air temperatures than earlier months, water temperatures are 

almost always less than 22 °C in September and October regardless of flow. Consistent with patterns seen in the 

measured data, the model predicts that annual maximum water temperatures occur later in the season in high-

flow years (i.e., late July or early August) than in low-flow years (i.e., early/mid-July), extending the duration of the 

period when cool water habitat is available for fish. 

Annual maximum daily maximum water temperatures (i.e., the single hottest temperature of the entire year) are 

up to 4.4 °C cooler in the highest-flow scenarios than the scenarios with the lowest flow. Higher flows delay and 

diminish the magnitude and frequency of exceedances of the biologically important 22 °C temperature threshold, 

but exceedances are still predicted during days with the hottest air temperatures each year which typically occur 

in July and/or August.  

If the flow on days which dropped below the CDFW instream flow criteria could instead be maintained at CDFW 

instream flow criteria, the model predicts that the date of onset of water temperatures greater than 22 °C would 

be delayed during drought years, average annual degree-days exceedance of 22 °C (a metric of cumulative 

thermal stress) would be reduced from 95 to 36, and average annual maximum temperature would be reduced to 

from 25.6 °C to 24.2 °C. Maintaining flows at levels equivalent the USFS water right would also cool water 

temperatures, but less cooling would occur than with the higher CDFW instream flow criteria. 

While flow appears to be an important driver of water temperatures in the Scott River in the months of May–

August, it is difficult to recommend a single flow threshold based solely on temperature.   

We are currently preparing a manuscript for peer-review, which if published would supersede this technical 

memorandum. 
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Introduction and methods 

Scott River study area 

The Scott River is located in Siskiyou County in northwest California, USA and is tributary to the Klamath 

River (Figure 1). The climate is Mediterranean with precipitation occurring primarily in winter and 

spring. Elevations in the Scott River’s mountainous headwaters exceed 2500m (Foglia et al. 2013). The 

human population is focused primarily in the alluvial Scott Valley at the center of the Scott River 

watershed. Most valley land is privately owned while the higher elevations are primarily National Forest. 

Irrigated agriculture is the dominant land use in the valley. In the summer and fall, river flows are 

depleted by withdrawal of groundwater and surface water for agricultural irrigation (Van Kirk and 

Naman 2008). There are ongoing efforts to model interactions between groundwater and surface water 

(Foglia et al. 2013, Tolley et al. 2018). In response to Sustainable Groundwater Management Act 

regulations, Siskiyou County is leading development of a groundwater sustainability plan for the valley. 

The low-gradient streams of the Scott Valley have extremely high intrinsic potential for coho salmon, 

although the habitat is currently impaired (NMFS 2014). High water temperatures in the Scott River are 

stressful to culturally and economically important salmon and steelhead (NCRWQCB 2006). Various 

waterbodies within the Scott River sub-basin are listed as impaired under the Clean Water Act. 

California’s North Coast Regional Water Quality Control Board developed Total Maximum Daily Loads 

(TMDLs) for water temperature and sediment in 2006 (NCRWQCB 2006). Portions of the river are also 

listed for biostimulatory conditions, pH, dissolved oxygen, and aluminum, but TMDLs have not yet been 

developed for those parameters.  

    

Figure 1. Maps showing the location of the USGS gage within the Scott River watershed, and the Scott River 

watershed in relation to California and the Klamath Basin. 
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Data sources and data preparation 

Water temperature and river flow 

Since 2007, the Quartz Valley Indian Reservation (QVIR) Environmental Department has been using YSI 

multi-parameter datasondes to monitor water quality in the Scott River at the U.S. Geological Survey 

(USGS) gage 11519500 near the outlet of Scott Valley (QVIR 2008, 2009, 2011, 2013, 2016; Asarian and 

Kann 2013) (Figure 1). Parameters include water temperature, dissolved oxygen (DO), pH, specific 

conductance, and turbidity. Measurements are recorded every 30 minutes. In a previous analysis of the 

QVIR sonde data for the years 2007–2012 and 2014–2018, these data were compiled, reviewed, and any 

suspicious values (e.g., when there were calibration issues or probes appear to have been exposed to 

air) were removed (Asarian 2019). 

The U.S. Forest Service (USFS) also monitors water temperature at this same site. For the years 1995–

1998, 2006, and 2010–2016, these data were compiled, reviewed, and any suspicious values were 

removed as part of a Klamath basin-wide stream temperature analysis (Asarian et al. 2020). 

We calculated and compiled daily summary statistics (minimum, mean, and maximum) of the USFS and 

QVIR water temperature data. For days on which these daily summaries were available from both 

entities, we averaged the values together. 

Daily average streamflow for USGS gage 11519500 were downloaded from the USGS National Water 

Information System (NWIS)1. 

 

Air temperature 

The USFS monitors air temperature at a Remote Automated Weather Station (RAWS) located at the top 

of Quartz Hill2, approximately 5 miles east-southeast of the USGS flow gage.  Following review and 

removal of suspicious values, we calculated daily summaries (minimum, mean, and maximum) from the 

air temperature data. For a small number of days lacking measured air temperature data, we estimated 

missing air temperature values using linear regression (r2=0.90) between the measured Quartz Hill air 

temperature and modeled air temperature data for the closest 4km-resolution grid cell from PRISM3 

(Daly et al. 2008). 

 

Data analysis 

Model calibration 

We used the nlme package version 3.1-137 (Pinheiro et al. 2018) in R (R Core Team 2019) to develop a 

linear mixed effects model to estimate daily maximum water temperatures under varying flow and air 

temperature conditions. We calibrated the model using all available data from the years 1995–2018. We 

compared several alternative model configurations using Akaike information criterion (AIC); however, in 

the interest of brevity this memo focuses almost exclusively on the final model. The only results 

presented in this memo for alternative models is a time series graph in Appendix B that compares the 

predictions of the final model with an alternative model that excludes flow (i.e., uses only air 

temperature and day of the year). We also developed a similar model for daily mean water 

temperatures but do not report those results in this memo. 

 
1 https://waterdata.usgs.gov/ca/nwis/uv?site_no=11519500 
2 https://raws.dri.edu/cgi-bin/rawMAIN.pl?caCQUA 
3 http://www.prism.oregonstate.edu/explorer/ 
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The relationship between water temperature and flow varies over the course of the year as a result of 

numerous other variables which follow their own seasonal cycles. For example, the source and flow 

paths of river water varies seasonally according to precipitation form (i.e., snow and rain), groundwater 

dynamics of hillslope and alluvial aquifers, and irrigation management (i.e., water withdrawals and 

subsequent return flows back the river via surface or groundwater). In addition, the effects of flow on 

water temperature could be seasonally mediated by variables that affect the intensity and duration of 

solar radiation striking the water, such as day length, solar angle, cloud cover, wildfire smoke, and leaf 

out and leaf fall of deciduous riparian vegetation. Some of these variables follow exactly the same 

seasonal trajectory each year while the timing of others fluctuate within ranges, but all have an annual 

cycle. It is not possible to include all these individual factors in a statistical model, so instead we use a 

harmonic regression approach by including annual sine-waves as proxies representing the implicit 

aggregation of these factors. Harmonic regression (also known as trigonometric regression and periodic 

regression) uses paired sine and cosine terms to represent periodicity (Cox 2006). For daily periodicity, 

the day of the year (1 to 365) is multiplied by 2π/365 (Helsel et al. 2020). Inclusion of both the sine and 

cosine (i.e., rather than just one) is needed to allow to the phase (i.e., timing) of the cycle to fit the data 

(Helsel et al. 2020). In our regression, we use paired sine and cosine terms to allow three elements to 

vary as a smooth cycle over the course of the year: 1) water temperature, and 2) the slope of the 

relationship between flow and water temperature. Harmonic regression to model the annual cycle of 

water temperature (i.e., #1 in the previous sentence) has been commonly used for many decades 

(Kothandaraman 1971, Johnson et al 2020); however, in the context of water temperature modeling we 

are not aware of previous application of this technique to covariates (i.e., predictor variables) other than 

day, although it as used in other disciplines (Bodeker et al. 1998, Roundy et al. 2017). Our final 

regression equation is: 

Tw = β0 + β1Ta + β2 sin(dn)Ta + β3 cos(dn)Ta + β4Q + β5 sin(dn)Q + β6 cos(dn)Q + β7 sin(dn) + β8 cos(dn) + ε 

Where Tw = daily maximum water temperature in units of degrees Celsius, Ta = daily mean air 

temperature, Q = daily mean flow in units of log base 10 cubic feet per second, d = day of the year 

(ranges from 1 [January 1] to 365 [December 31]), n = 2π/365, ε is an autocorrelation term, and β0, β1, 

β2, β3, β4, β5, β6, β7 and β8 are coefficients. The autocorrelation term (corCAR1, first order with a 

continuous time covariate) is included because water temperatures on adjacent days are highly 

correlated with each other. We also included a random intercept for year. 

 

Model scenarios 

We used non-parametric quantile regression to calculate the flow4 and air temperature associated with 

various quantiles (0.05, 0.50, and 0.95, equivalent to 5%, 50%, 95% exceedance probabilities) for each 

day of the year. For flow, the 0.50 quantile represents a typical year, the 0.05 quantile represents the 

years with very low flow conditions, and the 0.95 quantile represents years with very high flow 

conditions. We calculated similar quantiles (0.05, 0.50, and 0.95) for air temperatures. All non-

parametric quantile regressions were performed in R using the quantregGrowth package (Muggeo et al. 

2013). Whereas linear regression is used to predict the conditional mean of the response variable given 

a value of a predictor variable, quantile regression is used to predict the conditional median or other 

quantiles of the response variable (Cade and Noon 2003). Quantile regression is less affected by outliers 

than linear regression and is useful when the assumptions of linear regression are not met. Quantile 

 
4 Flow was base 10 log-transformed prior to non-parametric quantile regression, and then back-transformed into 

original units (cfs) for presenting in this memo’s tables and figures. 
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regression is particularly useful when other variables besides the primary predictor variable affect the 

response variable (Cade and Noon 2003). Non-parametric quantile regression is a type of quantile 

regression that allows flexible curves rather than straight lines. The quantregGrowth packages provides 

several options including: 1) whether curves for different percentiles are allowed to cross, 2) whether 

curves are forced to be monotonic (e.g., one variable tends to increase [or alternatively, decrease] as 

the other variable increases), 3) a lambda value which determines the amount of “wiggle” in the curves, 

and 4) a penalty term used to prevent under-smoothing. We experimented with several combinations of 

these options and ended up running non-parametric quantile regression for all variables using the same 

set of options that appeared to fit well: 1) allowing the curves for different quantiles to cross, 2) not 

forcing monotonicity, 3) lambda = 2, 4) a varying penalty of (1:k)^3. 

We then used the linear mixed effects model to predict water temperatures under 15 different 

scenarios representing combinations of air temperatures (cool = 0.05 quantile, typical = 0.50 quantile, 

hot = 0.95 quantile) and flows (low = 0.05 quantile, typical = 0.50 quantile, high = 0.95 quantile, and 

USFS = the USFS Schedule D first-priority water right, and CDFW = CDFW Interim Instream Flow Criteria). 

The USFS first-priority Scheduled D water right varies by month and day, from a high of 200 cfs in 

November through March to a low of 30 cfs in August and September (Superior Court for Siskiyou 

County 1980)(Appendix A). The California Department of Fish and Wildlife Interim Instream Flow Criteria 

vary by month and day, from a minimum of 62 cfs in September to a high of 362 in February (CDFW 

2017). Interestingly, the CDFW and USFS flows do not consistently track any particular quantile through 

the entire season. They are extreme drought conditions in May (0.05 quantile) but high flows in 

September (and lesser extent August and October). 

Finally, we used the linear mixed effects model to predict water temperatures under eight additional 

scenarios which pair the observed air temperature time series for 1995-2018 with eight flow conditions: 

observed USGS flows in addition to the five flows used in the other scenarios (low, typical, high, USFS, 

and CDFW) as well as two additional scenarios in which the CDFW and USFS flows are used as minimums 

that are supplanted by observed USGS flows on days when the observed flows are higher.   

In this memo, daily maximum water temperatures are compared to a threshold of 22 °C (Table 1). 

 

 

Table 1. Regulatory and biological thresholds used for this analysis. 

Threshold Justification 

Streamflow <40cfs 
U.S. Forest Service first priority Schedule D water right for July 16–31 

and October 1–31 (Superior Court for Siskiyou County 1980)*  

Streamflow <30cfs 
U.S. Forest Service first priority Schedule D water right for August 1–

September 30 (Superior Court for Siskiyou County 1980)* 

Water temperature daily maximum 

>22 °C 

Not an adopted objective. When the mainstem Klamath River exceeds 

22-23 °C, juvenile salmonids congregate in thermal refugia at tributary 

confluences (Sutton et al. 2007, Sutton and Soto 2012, Brewitt and 

Danner 2014). Similar results have been found in the Scott River 

(Maurer 2007). 

  

Table notes: 

* See Appendix A for details. The U.S. Forest Service first priority Schedule D water right varies by month and day, 

from a low of 30 cfs in August–September to a high of 200 cfs in November–March.  
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Results and Discussion 

Measured water temperature, air temperature, and flow 

The daily time series of measured water temperatures for all available years (1995–1998 and 2006–

2018) shows that during the months of May-July, water temperatures were highly variable between 

years (Figure 1). During those months, water temperatures during highest-flow years are up to almost 

10°C cooler than during lowest-flow years. In contrast, during the months of August through October 

inter-annual differences in water temperature are much less pronounced. Annual maximum water 

temperatures occur earlier in the season in low-flow years (i.e., early/mid July) than in high-flow years 

(i.e., late July or early August.  

 
Figure 2. Time series of daily mean air temperature, daily mean flow, daily maximum water temperature, and daily 

mean water temperature for May 1 through Nov 1 for the years 1995–1998 and 2006–2018. Dark blue lines are 

high-flow years, red lines are low-flow years, gray lines are other years. Black dashed lines are a LOESS (LOcally 

Estimated Scatterplot Smoothing) smoothers representing the conditions typical for the time of year. 
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Air temperature and flow are both correlated with water temperature (Figure 2, Figure 3). When 

combining all days together across the entire May-October period, the correlation between air 

temperature and water temperature is much stronger than the correlation between flow and water 

temperature (i.e., r2 0.67 vs. 0.17 as shown in the left panels in Figure 2 and Figure 3); however, the 

relationship varies by month. In May through July, the air/water temperature correlation is weaker than 

flow/water temperature correlation, while the reverse occurs in August through October. When flows 

are high, water temperatures are cooler than would be expected based solely on air temperatures (e.g., 

the blue dots in Figure 2 generally fall below the regression trend line). When air temperatures are low, 

water temperatures are cooler than would be expected solely based on flows (e.g., the blue dots in 

Figure 3 generally fall below the regression trend line). Potential mechanisms for the cooling effect of 

high flows include faster downstream transport of water from cool headwater areas, greater thermal 

mass which is more resistant to heating, and greater accretion of cool groundwater. 

 

 
Figure 3. Regression of daily maximum water temperature vs. daily average air temperature, for the months May–

October in the years 2007–2018. Each point (day) is shaded according to daily average flow. r2 is the coefficient of 

determination which indicates the strength of the correlation (0 = no correlation, 1 = perfect correlation). 

 

 
Figure 4. Linear regression of daily maximum water temperature vs. daily average flow, for the months May–

October in the years 2007–2018. Each point (day) is shaded according to air temperature. r2 is the coefficient of 

determination which indicates the strength of the correlation (0 = no correlation, 1 = perfect correlation). 
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Model calibration 

The model predicts daily maximum temperatures quite well, with a root mean squared error (RMSE) of 

1.17 °C (Figure 4). Similar to the pattern in the measured data (i.e., Figure 1) in the May-July period, the 

model predicts cool water temperatures during high-flow years and warm water temperatures during 

low-flow years (Figure 5). The complete time series of measured and modeled water temperature data 

for all years is available in Appendix B. 

 

Figure 5. Modeled vs. measured daily maximum water temperature for May 1 through Nov 1 for the years 1995–

1998 and 2006–2018. Thick solid line is a linear regression and the thin dotted line is the 1:1 (Y=X) line. 
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Figure 6. Daily time series of measured (dots) and modeled (solid lines) daily maximum water temperature in the 

Scott River at the USGS gage for three example high-flow years (2011, 2011, and 2017) and three example low-

flow years (2014, 2015, 2018). Horizontal dashed line at 22 °C indicates a temperature threshold for juvenile 

salmonids. Curved grey dashed line is LOESS smoother of daily measured maximum water temperature for all 

years 1995-2018 which indicates typical conditions for the time of year (see explanation in Figure 1 above). A 

similar plot of all years is available in Appendix B. 
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Model scenarios 

The results from the twelve model scenarios show that flow and air temperature both have strong 

effects on water temperature (Figure 6). The effect of flow varies across the season, with greater effects 

in May–July than August, and almost no effect in September and October. For example, relative to the 

lowest-flow scenarios, the water temperatures predicted under the highest-flow scenarios are 6.3 °C 

cooler on June 1, 3.5 °C cooler on August 1, and identical on October 1 (Figure 6). With short days and 

lower naturally lower air temperatures than earlier months, water temperatures are almost always less 

than 22 °C in September and October regardless of flow (e.g., gray lines in bottom panel of Figure 6). 

Consistent with patterns in the measured data (Figure 1), modeled annual maximum water 

temperatures occurred later in the season in high-flow years (i.e., late July or early August) than in low-

flow years (i.e., early/mid-July) (Figure 6), extending the duration of the period where cool water habitat 

is available for fish.  

A second set of scenarios where we predicted daily maximum water temperatures pairing the observed 

air temperature time series for 1995-2018 with eight flow scenarios (Figure 7). These scenarios provide 

an indication of the range (e.g., due to air temperatures) in water temperature associated with each 

flow scenario. Summaries of annual maximum temperatures and the timing of exceedances of 22 °C are 

provided in Figure 8 and Figure 9, respectively. Compared to the lowest flow scenario (0.05 quantile), 

the highest flow scenario (0.95 quantile) has annual maximum temperatures that are 4.4 °C cooler 

(Figure 9) and temperatures first reach 22 °C 40 days later (Figure 8); there is also a 10-day difference in 

the last day of the year that has temperatures >22 °C. The scenario with observed flows has the most 

interannual variation in the annual maximum temperature (Figure 9) and timing of exceedances 22 °C 

(Figure 8), because it includes very low flows as well as very high flows. Water temperatures reach 22 °C 

12 days earlier with the USFS flows than with observed flows (Figure 8) because the USFS flows are 

much lower than average observed flows in May and June. In contrast, in the scenario in which USFS 

flows are treated as minimums (supplanted by observed flows on days when observed flows are higher), 

temperatures reach 22 °C on a similar date as in the observed flow scenario. Due to high July and August 

flows in the CDFW scenarios, annual maximum water temperatures are 1.2–1.4 °C cooler in the CDFW 

scenarios than the observed flow scenario (Figure 9). Patterns of inter-scenario differences in annual 

degree-days exceedance of 22 °C (Figure 10) are similar to those of annual maximum temperature 

(Figure 9).  While the CDFW flows and USFS flows are both predicted to improve (i.e., cool) 

temperatures relative to current conditions, these improvements would be greater with the higher 

CDFW flows. 

 

Future work 

We are currently preparing a manuscript for peer-review, which if published would supersede this 

technical memorandum. The manuscript will include cross-validation, additional analyses, and literature 

context. 
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Figure 7. Air temperature (top panels) and flow (middle panels) inputs to statistical model, and predicted water 

temperatures (bottom panels) at Scott River USGS gage under 15 different scenarios. These scenarios represent 

combinations of cool/typical/hot air temperatures (arranged in columns) and high/CDFW/USFS/typical/low flows 

(shown by color). For context, observed values for 1995–2018 are shown as thin gray lines. Data values are labeled 

for June 1 and August 1. There is only a single black line (rather than five colored lines) in each of the top panels 

because the figure is arranged with air temperature scenarios as columns, so temperatures are identical within 

each column.  

Model 
Inputs 

Model 
Predictions 



12 

 

 
Figure 8. Daily maximum water temperatures at Scott River USGS gage predicted with a statistical model pairing 

observed air temperatures for 1995–2018 with eight different flow conditions: observed time series of USGS flows,  

three quantile flow scenarios (as show in middle panel of Figure 6), and four flow scenarios based on the CDFW 

interim instream flow criteria and USFS water right. Two scenarios use the exact flows (based on month and day) 

specified in the CDFW flow criteria and USFS water right (as show in middle panel of Figure 6), while the two other 

treat the CDFW flow criteria and USFS water right as minimums that are supplanted by the observed flows when 

the observed flows are higher. 
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Figure 9. First and last day each year when daily maximum temperatures at Scott River USGS gage exceed 22 °C in 

predictions from a statistical model pairing observed air temperatures for 1995–2018 with the same eight flow 

conditions shown in Figure 7. Points for individual years are offset slightly to avoid obscuring each other. 

 

 
Figure 10. Annual maximum water temperatures at Scott River USGS gage predicted using a statistical model 

pairing observed air temperatures for 1995–2018 with the same eight flow conditions shown in Figure 7. Points for 

individual years are offset slightly to avoid obscuring each other. Data labels are shown for the mean of all years.  
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Figure 11. Annual degree-days of water temperatures exceeding 22 °C at Scott River USGS gage predicted using a 

statistical model pairing observed air temperatures for 1995–2018 with the same eight flow conditions shown in 

Figure 7. We calculated degree-days by subtracting 22 from all daily maximum water temperatures and summing 

all positive values by year. Points for individual years are offset slightly to avoid obscuring each other. Data labels 

are shown for the mean of all years.  
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Appendix A 

As shown in the following excerpt from the Scott River adjudication (Superior Court for Siskiyou County 

1980), the U.S. Forest Service Schedule D first priority water right varies by month and day: 
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Appendix B 

Daily time series of measured (i.e., observed)[blue dots] and modeled (i.e., predicted)[green lines] daily 

maximum water temperatures in the Scott River at the USGS gage: 

 


