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Summary: 

High water temperatures, low dissolved oxygen, and high pH are stressful to juvenile salmon and 
steelhead in the Scott River. The Quartz Valley Indian Reservation (QVIR) Environmental Department 
monitors water quality at the U.S. Geological Survey (USGS) Scott River gage using multi-parameter 
sondes. In this memo, I use linear regression and non-parametric quantile regression to analyze the 
relationships between flow, air temperature, and daily summaries of QVIR’s water temperature, 
dissolved oxygen, and pH data collected during the months of May–October in the years 2007–2018. 
The purpose of this analysis is to assess the importance of instream flows to water quality in the Scott 
River. 

The results indicate that water quality in the Scott River is generally better when flows are high. During 
months when flows are high (May and June), there is a stronger correlation between flow and daily 
maximum water temperature than between air temperature and daily maximum water temperature, 
indicating that flow is the dominant driver of water temperature during those months. Flows typically 
progressively decline over the summer to reach a low in September. Under the current climate and land 
use, flows are so low in August and September that they provide very little cooling influence on water 
temperature during those months, in contrast to strong cooling effects in May and June. The correlation 
between flow and daily maximum pH is relatively strong in all months during the May–October period, 
with higher flows associated with lower (i.e., better) pH. Daily minimum dissolved oxygen (for both 
concentration and percent saturation) is also correlated with flow during all months May–October, 
although the correlation is weaker in September and October. The correlation between flow and daily 
mean dissolved oxygen is generally weak except during the months of May and June when high flows 
increase dissolved oxygen by cooling water temperatures (due to physics, colder water is capable of 
holding more oxygen). 

The non-parametric quantile regressions fit flexible curves to quantiles (i.e., percentiles) in the 
relationships between flow and each water quality variable (e.g., daily maximum pH). These curves can 
then be used to provide estimates of the probability (i.e., percent of days) that a water quality threshold 
is expected to be exceeded for a given flow (Figure 1, Table 1). Flow thresholds can then be derived by 
selecting the desired probability and water quality threshold. In this memo, I emphasize the relatively 
protective 5% probability of exceeding a water quality threshold; however, users of this memo can 
select a different probability if desired. The flows associated with a 5% probability of exceeding water 
quality thresholds are 195 cfs for dissolved oxygen daily average <8 mg/L, 33 cfs for dissolved oxygen 
daily minimum <6 mg/L, 574 cfs for dissolved oxygen saturation daily minimum <90%, 238 cfs for 
dissolved oxygen saturation daily minimum <85%, 73 cfs for pH maximum >8.5, and 280 cfs for water 
temperature daily maximum >22 °C (Figure 1, Table 1). 

 



 
Figure 1. Percent of days (i.e., probability) on which water quality thresholds are expected to be exceeded in the 
Scott River at various flows. Results are based on non-parametric quantile regressions of daily summaries of water 
quality data collected by the Quartz Valley Indian Reservation and streamflow data from the U.S. Geological Survey 
at the Scott River gage during the months May–October in the years 2007–2018. Note: the x-axis is plotted on a log 
scale. 

 

 

Table 1. Flow associated with a given probability (1% to 99%) of exceeding water quality thresholds. See Figure 1 
for additional explanation (this table is the same data as Figure 1).  

 

Flow (cfs) associated with a given probability 
of exceeding water quality threshold 

Water quality threshold 99% 95% 90% 75% 50% 25% 10% 5% 1% 
Water temperature maximum >22 C 4 4 4 4 137 215 241 280 368 
pH maximum >8.5 4 4 4 7 24 34 50 73 182 
DO percent saturation minimum <90% 9 135 147 256 386 451 528 573 1040 
DO percent saturation minimum <85% 5 7 33 55 106 187 219 238 579 
DO concentration daily minimum <6 mg/L 4 4 4 4 4 5 22 34 65 
DO concentration daily mean <8 mg/L 4 4 4 105 127 153 164 195 336 
 

  



Introduction and Methods: 

The Scott River is located in Siskiyou Count in northwest California, USA and is tributary to the Klamath 
River. Various waterbodies within the Scott River sub-basin are listed as impaired under the Clean Water 
Act. California’s North Coast Regional Water Quality Control Board developed Total Maximum Daily 
Loads (TMDLs) for water temperature and sediment in 2006 (NCRWQCB 2006). Portions of the river are 
also listed for biostimulatory conditions, pH, dissolved oxygen, and aluminum, but TMDLs have not yet 
been developed for those parameters. 

Since 2007, the Quartz Valley Indian Reservation (QVIR) Environmental Department has been using YSI 
multi-parameter datasondes to monitor water quality in the Scott River at the U.S. Geological Survey 
(USGS) gage 11519500 near the outlet of Scott Valley (QVIR 2008, 2009, 2011, 2013, 2016; Asarian and 
Kann 2013). Parameters include water temperature, dissolved oxygen (DO), pH, specific conductance, 
and turbidity. QVIR Environmental Director Crystal Robinson compiled these data and provided them to 
me. I conducted informal QA/QC of the data by plotting time series of each parameter with daily 
average streamflow from the Scott River USGS gage 115195001 and air temperature from the Quartz 
Hill2 Remote Automated Weather Station (RAWS), reviewing field calibration datasheets for some years, 
discussing with QVIR staff, and then removing suspicious values. In the future, the dataset could likely be 
further improved by conducting a more formal QA/QC process and correcting for fouling and calibration 
drift using USGS methods (Wagner 2006). Future correction could allow some data excluded that was 
excluded from this analysis due to calibration drift and biofouling to be made usable. In most years, the 
datasondes were programmed to report dissolved oxygen saturation relative to sea level, so I re-
calculated percent saturation appropriate for the site elevation (804.4 m) using the rMR package 
(Moulton 2018) in R (R Core Team 2019).  

Following QA/QC, I calculated daily summaries (minimum, mean, and maximum) for air temperature 
and water quality parameters. Summaries were only calculated for days when >=80% of the 
measurements for a parameter were present. 

I used linear regression and graphical analysis to explore relationships between the parameters, with an 
emphasis on streamflow, and compared observed values to regulatory and biological thresholds (Table 
2). Unless otherwise noted, analyses were confined to the period May–October because that is the 
period when water quality is impaired.  

In addition, I used non-parametric quantile regression to estimate the daily average streamflow3 
associated with various quantiles (0.01 to 0.99, equivalent to 1-99% probabilities) of exceeding of 
regulatory and biological thresholds. Non-parametric quantile regression was performed in R using the 
quantregGrowth package (Muggeo et al. 2013). Whereas linear regression estimates the mean of the 
response variable given a value of a predictor variable, quantile regression estimates the median or 
other quantiles of the response variable (Cade and Noon 2003). Quantile regression is less affected by 
outliers than linear regression and is useful when the assumptions of linear regression are not met. 
Quantile regression is particularly useful when other variables besides the primary predictor variable 
affect the response variable (Cade and Noon 2003). For example, water temperature is affected by air 
temperature in addition to streamflow. Non-parametric quantile regression is a type of quantile 
regression that allows flexible curves rather than straight lines. The quantregGrowth packages provides 
several options including: 1) whether curves for different percentiles are allowed to cross, 2) whether 

                                                           
1 https://waterdata.usgs.gov/ca/nwis/uv?site_no=11519500 
2 https://raws.dri.edu/cgi-bin/rawMAIN.pl?caCQUA 
3 Flow was log-transformed prior to non-parametric quantile regression, and then back-transformed into original 
units (cfs) for presenting in this memo’s tables and figures. 



curves are forced to be monotonic (e.g., one variable tends to increase [or alternatively, decrease] as 
the other variable increases), 3) a lambda value which determines the amount of “wiggle” in the curves, 
and 4) a penalty term used to prevent under-smoothing. I experimented with several combinations of 
these options and ended up running non-parametric quantile regression for all variables using the same 
set of options4 that appeared to fit well.  The curves were then used to estimate the probability (i.e., 
percent of days) that a water quality threshold is expected to be exceeded (i.e., violated) for a given 
flow. Flow thresholds can then be derived by selecting the desired probability and water quality 
threshold. In this memo, I emphasize the relatively protective 5% probability of exceeding a water 
quality threshold, which is derived from the 0.95 quantile for pH and water temperature (since 
exceedances for those parameters are values greater than the threshold) and the 0.05 quantile for 
dissolved oxygen (since exceedances for this parameter are values less than the threshold); however, 
users of this memo select a different probability if desired. 

 

Table 2. Regulatory and biological thresholds used for this analysis. 

Threshold Justification 

Streamflow <40cfs U.S. Forest Service first priority water right for July 16–31 and October 
1–31 (Superior Court for Siskiyou County 1980)***  

Streamflow <30cfs U.S. Forest Service first priority water right for August 1–September 30 
(Superior Court for Siskiyou County 1980)*** 

DO <8 mg/L 7-day average** NCRWQCB (2018) Basin Plan aquatic life-based objective 
DO <6 mg/L daily minimum NCRWQCB (2018) Basin Plan aquatic life-based objective 
DO saturation <90% daily minimum 
(at natural water temperature)* 

NCRWQCB (2018) Basin Plan wet season objective if aquatic life-based 
objective not achievable due to natural conditions 

DO saturation <85% daily minimum 
(at natural water temperature)* 

NCRWQCB (2018) Basin Plan dry season objective if aquatic life-based 
objective not achievable due to natural conditions 

pH >8.5 daily maximum  NCRWQCB (2018) Basin Plan objective 

Water temperature daily maximum 
>22 °C 

Not an adopted objective. When the mainstem Klamath River exceeds 
22-23 °C, juvenile salmonids congregate in thermal refugia at tributary 
confluences (Sutton et al. 2007, Sutton and Soto 2012, Brewitt and 
Danner 2014). Similar results have been found in the Scott River 
(Maurer 2007). 

Table notes: 
* See NCRWQCB (2018) Basin Plan for details. The default DO objectives are the aquatic life-based objectives. If 
aquatic life-based objective are not achievable due to natural conditions, then NCRWQCB can apply site specific 
background DO requirements as water quality objectives by calculating the daily minimum DO necessary to 
maintain 85% DO saturation during the dry season and 90% DO saturation during the wet season under site 
salinity, site atmospheric pressure, and natural receiving water temperatures. The method(s) used to estimate 
natural temperatures for a given waterbody or stream length may include comparison with reference streams, 
simple calculation, or computer models. 
** For ease of calculation, in this analysis I use daily average rather than a 7-day average. Exceedances of a 7-day 
average would likely occur less frequent than exceedances of the daily average. 
*** See Appendix A for details. The U.S. Forest Service first priority water right varies by month and day, from a 
low of 30 cfs in August–September to a high of 200 cfs in November–March.  
  

                                                           
4 1) not allowing the curves for different quantiles to cross, 2) forcing monotonicity, 3) lambda = 2, 4) a varying 
penalty of (1:k)^3   



Results and Discussion: 

Summary of all parameters 

Figure 2 and Figure 3 present a time series and monthly summary, respectively, of the 2007–2018 data. 

 

 

 

 
Figure 2. Boxplot of daily average air temperature at Quartz Hill (top panel) and daily average streamflow, daily 
maximum water temperature, daily maximum pH, and daily minimum dissolved oxygen concentration and percent 
saturation in the Scott River at the USGS gage (bottom five panels) for the months January–December in the years 
2007–2018. The horizontal line inside the box is median, the upper and lower edges of the box are 25th and 75th 
percentiles, the upper whisker extends to the highest value that is within 1.5 times the interquartile range 
(75thminus 25th percentile) from the box's edge, and points plotted beyond the whiskers are outliers. 



 

 

 
Figure 3. Time series of daily average air temperature at Quartz Hill (top panel) and daily average streamflow 
(second and third panels), daily maximum water temperature, daily maximum pH, and daily minimum dissolved 
oxygen concentration and percent saturation in the Scott River at the USGS gage (bottom five panels) for the 
months May–October in the years 2007–2018. 

  

(log scale on 
y-axis) 



Water Temperature 

Air temperature and flow are both correlated with water temperature (Figure 4, Figure 5). When 
combining all days together across the entire May-October period, the correlation between air 
temperature and water temperature is much stronger than the correlation between flow and water 
temperature (i.e., r2 0.70 vs. 0.23 as shown in the left panels in Figure 4 and Figure 5); however, the 
relationship varies by month. In May and June, the air/water temperature correlation is weaker than 
flow/water temperature correlation, while the reverse occurs in August through October. In July, the 
strength of the correlations are approximately equal. When flows are high, water temperatures are 
cooler than would be expected based solely on air temperatures (e.g., the blue dots in Figure 4 generally 
fall below the regression trend line). When air temperature are low, water temperatures are cooler than 
would be expected solely based on flows (e.g., the blue dots in Figure 5 generally fall below the 
regression trend line). Potential mechanisms for the cooling effect of high flows include faster 
downstream transport of water from cool headwater areas, greater thermal mass which is more 
resistant to heating, and greater accretion of cool groundwater. The 0.95 quantile regression line 
crosses the 22 °C threshold at 280 cfs (Figure 6, Figure 1, Table 1), meaning that when flow is ≥280 cfs, 
there is only a 5% probability that that water temperatures will exceed 22 °C. 

 

 
Figure 4. Regression of daily maximum water temperature vs. daily average air temperature, for the months May–
October in the years 2007–2018. Each point (day) is shaded according to daily average flow. R2 is the coefficient of 
determination which indicates the strength of the correlation (0 = no correlation, 1 = perfect correlation). 

 

 
Figure 5. Linear regression of daily maximum water temperature vs. daily average flow, for the months May–
October in the years 2007–2018. Each point (day) is shaded according to air temperature. R2 is the coefficient of 
determination which indicates the strength of the correlation (0 = no correlation, 1 = perfect correlation). 



 

 

Figure 6. Non-parametric quantile regression of daily maximum water temperature vs. daily average flow, for the 
months May–October in the years 2007–2018.  

 

pH 

The correlation between flow and daily maximum pH is relatively strong in all months during the May 
through October period (Figure 7). Most exceedances of pH greater than 8.5 occurred when flow 
dropped below 40 cfs. pH fluctuates daily in response to cycles of photosynthesis and respiration by 
periphytic algae and aquatic plants attached to the riverbed, reaching a low around sunrise and a high in 
the late afternoon or early evening. Daily pH range (calculated as daily maximum minus daily minimum) 
can be used as a coarse proxy to indicate the productivity of the periphyton and aquatic plants. Daily 
maximum pH values are higher when daily pH range is higher (Figure 8A), indicating that pH range. pH 
range has a similar correlation to flow as daily maximum pH (Figure 7, Figure 8B).  

Periphyton and aquatic plants take time (days to weeks) to reach maximum biomass once growing 
conditions become favorable (clear water and long sunny days) in summer. Therefore, flow in preceding 
weeks may be just as important, if not more important, of a driver of pH than a current day’s flow is. 
Given the gradual seasonal recession of flow (Figure 2, Figure 3) a current day’s flow is highly correlated 
with flow in preceding weeks. 

The 0.95 quantile regression line crosses the pH 8.5 threshold at 73 cfs (Figure 9, Figure 1, Table 1), 
meaning that when flow is ≥73 cfs, there is only a 5% probability that that pH will exceed 8.5. 

 



 
Figure 7. Linear regression of daily maximum pH vs. daily average flow, for the months May–October in the years 
2007–2018. Each point (day) is shaded according to water temperature. R2 is the coefficient of determination 
which indicates the strength of the correlation (0 = no correlation, 1 = perfect correlation). 

 

  
Figure 8. Linear regression of A) daily maximum pH vs. daily pH range, B) daily pH range vs. daily average flow, for 
the months May–October in the years 2007–2018. Each point (day) is shaded according to water temperature. R2 
is the coefficient of determination which indicates the strength of the correlation (0 = no correlation, 1 = perfect 
correlation). 

 

 
Figure 9. Non-parametric quantile regression of daily maximum pH vs. daily average flow, for the months May–
October in the years 2007–2018.  

A) B) 



Dissolved oxygen (DO) 

The correlation between flow and daily minimum DO is stronger in May through August than September 
and October, for both percent saturation (Figure 10) and concentration (Figure 11). The flow/DO 
concentration correlation (Figure 10) is weaker than the flow/DO percent saturation correlation (Figure 
11), likely because minimum DO concentration is directly affected by water temperature (cooler water 
holds more oxygen) whereas minimum DO saturation is determined by the productivity of periphytic 
algae and aquatic plants. Minimum DO concentrations below 6 mg/L occurred almost solely when flows 
were less than 40 cfs (Figure 11 left panel). DO below 85% and 90% saturation were common even at 
relatively high flows (i.e., greater than 100 cfs and 300 cfs, respectively). Daily mean DO concentrations 
below 8 mg/L are only correlated with flow in May and June (Figure 12). Discussion of periphyton and 
aquatic plants in the pH section above is also largely applicable to DO as well. 

For both concentration (Figure 13) and percent saturation (Figure 14), daily minimum DO is correlated 
with water temperature. For most months, flow is a better predictor of daily minimum DO percent 
saturation than water temperature is (Figure 10, Figure 13); however, the reverse occurs for daily 
minimum DO concentration (Figure 11, Figure 14). 

The 0.05 quantile regression line crosses dissolved oxygen thresholds at 195 cfs for dissolved oxygen 
daily average <8 mg/L, 33 cfs for dissolved oxygen daily minimum <6 mg/L, 574 cfs for dissolved oxygen 
saturation daily minimum <90%, and 238 cfs for dissolved oxygen saturation daily minimum <90%, 
(Figure 15, Figure 1, Table 1), meaning that when flow is greater than or equal to those values, there is 
only a 5% probability that those water quality thresholds will be exceeded. 

 

 

 
Figure 10. Regression of daily minimum dissolved oxygen percent saturation vs. daily average flow, for the months 
May–October in the years 2007–2018. Each point (day) is shaded according to water temperature. R2 is the 
coefficient of determination which indicates the strength of the correlation (0 = no correlation, 1 = perfect 
correlation). 

  



 
Figure 11. Regression of daily minimum dissolved oxygen concentration vs. daily average flow, for the months 
May–October in the years 2007–2018. Each point (day) is shaded according to water temperature. R2 is the 
coefficient of determination which indicates the strength of the correlation (0 = no correlation, 1 = perfect 
correlation). 

 
Figure 12. Regression of daily mean dissolved oxygen concentration vs. daily average flow, for the months May–
October in the years 2007–2018. Each point (day) is shaded according to daily average flow. R2 is the coefficient of 
determination which indicates the strength of the correlation (0 = no correlation, 1 = perfect correlation). 
 

 
Figure 13. Regression of daily minimum dissolved oxygen percent saturation vs. daily average water temperature, 
for the months May–October in the years 2007–2018. Each point (day) is shaded according to daily average flow. 
R2 is the coefficient of determination which indicates the strength of the correlation (0 = no correlation, 1 = perfect 
correlation). 
 



 
Figure 14. Regression of daily minimum dissolved oxygen concentration vs. daily average water temperature, for 
the months May–October in the years 2007–2018. Each point (day) is shaded according to daily average flow. R2 is 
the coefficient of determination which indicates the strength of the correlation (0 = no correlation, 1 = perfect 
correlation). 

 

        

 

Figure 15. Non-parametric quantile 
regression of A) daily minimum 
dissolved oxygen saturation vs. daily 
average flow, B) daily minimum 
dissolved oxygen concentration vs. daily 
average flow, and C) daily mean 
dissolved oxygen concentration vs. daily 
average flow, for the months May–
October in the years 2007–2018. 

 

A) 

C) 

B) 
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Appendix A 

As shown in the following excerpt from the Scott River adjudication (Superior Court for Siskiyou County 
1980), the U.S. Forest Service first priority water right varies by month and day: 

 

http://pubs.water.usgs.gov/tm1d3


Appendix B 

Time series of 30-minute QVIR sonde data and daily average USGS flow data. USGS.FLOW is flow in cfs units. USGS.FLOW.less100 is only flows less than 100 cfs, 
included here to allow the flows to be legible during low-flow periods.  
 







 
 
 


